R300 - Advanced Econometric Methods PROBLEM SET 4 - SOLUTIONS

Posted on Mon. November 4 Due on Tue. November 12, 2018 at noon

1. Suppose that

$$
y_{i}=x_{i} \beta_{1}+z_{i} \beta_{2}+\varepsilon_{i} .
$$

State and show the Frisch-Waugh-Lovell theorem (say, for β_{1}) by explicit calculation.

The Frisch-Waugh-Lovell theorem here goes as follows. Regressing y_{i} on z_{i} gives residuals

$$
\hat{u}_{i}=y_{i}-z_{i} \hat{\gamma}_{1}, \quad \hat{\gamma}_{1}=\frac{\sum_{i} z_{i} y_{i}}{\sum_{i} z_{i}^{2}}
$$

Regressing x_{i} on z_{i} gives residuals

$$
\hat{v}_{i}=x_{i}-z_{i} \hat{\gamma}_{2}, \quad \hat{\gamma}_{2}=\frac{\sum_{i} z_{i} x_{i}}{\sum_{i} z_{i}^{2}}
$$

Regressing \hat{u}_{i} on \hat{v}_{i} gives slope coefficient

$$
\hat{\beta}_{1}=\frac{\sum_{i} \hat{v}_{i} \hat{u}_{i}}{\sum_{i} \hat{v}_{i}^{2}}
$$

This slope is numerically identical to the least-squares estimator applied directly to the bivariate regression problem.

To see this first note that the least-squares estimator solves

$$
\min _{b_{1}, b_{2}} \sum_{i=1}^{n}\left(y_{i}-x_{i} b_{1}-z_{i} b_{2}\right)^{2} .
$$

The first-order conditions are

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i}\left(y_{i}-x_{i} b_{1}-z_{i} b_{2}\right)=0 \\
& \sum_{i=1}^{n} z_{i}\left(y_{i}-x_{i} b_{1}-z_{i} b_{2}\right)=0 .
\end{aligned}
$$

From the second equation,

$$
\sum_{i} z_{i}\left(y_{i}-x_{i} b_{1}\right)=\sum_{i} z_{i}^{2} b_{2}
$$

and so

$$
b_{2}=\frac{\sum_{i} z_{i}\left(y_{i}-x_{i} b_{1}\right)}{\sum_{i} z_{i}^{2}}
$$

Substituting back into the first-order condition for b_{1} gives

$$
\sum_{i=1}^{n} x_{i}\left(y_{i}-x_{i} b_{1}-z_{i} \frac{\sum_{i^{\prime}} z_{i^{\prime}} y_{i^{\prime}}}{\sum_{i^{\prime}} z_{i^{\prime}}^{2}}+z_{i} \frac{\sum_{i^{\prime}} z_{i^{\prime}} x_{i^{\prime}}}{\sum_{i^{\prime}} z_{i^{\prime}}^{2}} b_{1}\right)=0
$$

But note that (using the definitions from above) this is

$$
\sum_{i=1}^{n} x_{i}\left(\left(y_{i}-z_{i} \hat{\gamma}_{1}\right)-\left(x_{i}-z_{i} \hat{\gamma}_{2}\right) b_{1}\right)=0
$$

or even

$$
\sum_{i=1}^{n} x_{i}\left(\hat{u}_{i}-\hat{v}_{i} b_{1}\right)=0
$$

The solution is

$$
\hat{\beta}_{1}=\frac{\sum_{i} x_{i} \hat{u}_{i}}{\sum_{i} x_{i} \hat{v}_{i}}=\frac{\sum_{i} \hat{v}_{i} \hat{u}_{i}}{\sum_{i} \hat{v}_{i}^{2}}
$$

To see the last transition note that, by definition, $x_{i}=z_{i} \hat{\gamma}_{2}+\hat{v}_{i}$. Then,

$$
\sum_{i} x_{i} \hat{u}_{i}=\sum_{i}\left(z_{i} \hat{\gamma}_{2}+\hat{v}_{i}\right) \hat{u}_{i}=\hat{\gamma}_{2} \sum_{i} z_{i} \hat{u}_{i}+\sum_{i} \hat{v}_{i} \hat{u}_{i}=\sum_{i} \hat{v}_{i} \hat{u}_{i} .
$$

Indeed, $\sum_{i} z_{i} \hat{u}_{i}=0$ by properties of the least-squares regression of y_{i} on z_{i}. The same argument explains why $\sum_{i} x_{i} \hat{v}_{i}=\sum_{i} \hat{v}_{i}^{2}$.

Note that the regression of y_{i} on z_{i} is performed mostly for didactical purposes. Replacing \hat{u}_{i} by y_{i} and estimating β_{1} by

$$
\frac{\sum_{i} y_{i} \hat{v}_{i}}{\sum_{i} \hat{v}_{i}^{2}}
$$

gives the same result. (Be sure to convince yourself of this.)
2. Suppose x is continuous and uniformly distributed on the interval $[\theta, \theta+1]$. We wish to test

$$
H_{0}: \theta=0 \quad \text { vs } \quad H_{1}: \theta>0 .
$$

Consider the procedure
Reject H_{0} if $x>.95, \quad$ Accept H_{0} otherwise.
(i) Compute the size of this test.
(ii) Derive the power function.
(i) Under the null, x is uniformly distributed on $[0,1]$. Hence,

$$
P_{0}(X>.95)=.05
$$

so that this test has size $\alpha=.05$.
(ii) Under the fixed alternative θ, x is uniformly distributed on $[\theta, \theta+1]$ and so

$$
P_{\theta}(x \leq v)=v-\theta .
$$

The power function at θ is

$$
\beta(\theta):=P_{\theta}(x>.95)=1-P_{\theta}(x \leq .95)= \begin{cases}0 & \text { if } \theta \leq-.05 \\ \theta+.05 & \text { if } \theta \in(-.05, .95]) \\ 1 & \text { if } \theta>.95\end{cases}
$$

which is monotone non-decreasing in θ.
2. Suppose $x \sim N\left(\mu, \sigma^{2}\right)$. Consider two independent random samples on $x,\left\{x_{1 i}\right\}_{i=1}^{n}$ and $\left\{x_{2 i}\right\}_{i=1}^{n}$. Find a sample size n so that

$$
P\left(\left|\bar{x}_{1}-\bar{x}_{2}\right|<\frac{\sigma}{5}\right)
$$

is .99. Explain how you proceed.

By normality both sample means \bar{x}_{1} and \bar{x}_{2} have distribution $N\left(\mu, \sigma^{2} / n\right)$. By independence, their difference $\bar{x}_{1}-\bar{x}_{2}$ is distributed as $N\left(0,2 \sigma^{2} / n\right)$. Now,

$$
P\left(\left|\bar{x}_{1}-\bar{x}_{2}\right|<\frac{\sigma}{5}\right)=P\left(-\frac{\sigma}{5}<\bar{x}_{1}-\bar{x}_{2}<\frac{\sigma}{5}\right)=P\left(-\frac{1 / 5}{\sqrt{2} / \sqrt{n}}<z<\frac{1 / 5}{\sqrt{2} / \sqrt{n}}\right)
$$

for $z=\left(\bar{x}_{1}-\bar{x}_{2}\right) /(\sqrt{2} \sigma / \sqrt{n})$ standard normal. Thus, we need to solve

$$
P\left(z \geq \frac{1}{5} \sqrt{\frac{n}{2}}\right)=1-\Phi\left(\frac{1}{5} \sqrt{\frac{n}{2}}\right)=.005
$$

for n. The table for critical values of the standard-normal distribution gives us that this is equivalent to solving $\frac{1}{5} \sqrt{\frac{n}{2}}=2.576$ for n. This yields $n \approx 332$.
4. Suppose that x_{i} is exponential with density

$$
f_{\theta}(x)=\theta e^{-x \theta}
$$

where $\theta>0$ and $x \geq 0$.
(i) Derive the maximum likelihood estimator of θ, say $\hat{\theta}$.
(ii) Derive the asymptotic distribution of $\hat{\theta}$.
(iii) Derive the asymptotic distribution of the estimator $1 / \hat{\theta}$.
(i) The MLE is $1 / \bar{x}$.
(ii) The information bound is θ^{2} / n. The asymptotic distribution result is

$$
\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{d} N\left(0, \theta^{2}\right) .
$$

(iii) Continuous mapping implies that $\bar{x}=1 / \hat{\theta} \xrightarrow{p}=1 / \theta=E\left(x_{i}\right)$. The Jacobian of the transformation is $-1 / \theta^{2}$ and so, by the Delta method,

$$
\sqrt{n}\left(\bar{x}-E\left(x_{i}\right)\right) \xrightarrow{d} N\left(0,1 / \theta^{2}\right)
$$

